Course Specifications
Valid as from the academic year 2020-2021

Simulation of Sustainable Metallurgical Process (I002850)

Due to Covid 19, the education and evaluation methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora.

Course offerings in academic year 2020-2021
A (semester 1) English Gent

Lecturers in academic year 2020-2021
Reuter, Markus FREIBE lecturer-in-charge

Offered in the following programmes in 2020-2021
crds offering
International Master of Science in Sustainable and Innovative Natural Resource Management 6 A

Teaching languages
English

Keywords

Position of the course

Contents
Reactor types in process metallurgy and minerals processing (e.g. TSL, Kaldo, flash smelting, QSL, flotation cells etc.) will be compared using simulation cases, evaluated and optimised for metal and minor metal recovery. The environmental footprint as also the economic performance of each reactor type will be compared with each other to establish best options for reactor flotation types as a function of feed types. The student will understand minerals processing and metallurgical reactor technology better and also be in a better position to create more sustainable industry and society. Process design cases will be performed by the students to optimally process different feed types. By using a wider range of reactor types the student will be able to simulate complete flowsheets, provide mass and energy balances at the same time also determine the environmental footprint as well as economic analysis. This course will also examine the impact of product design on the recycling of various end-of-life products such as mobile phones etc. Thus, not only will natural resources be processed in the simulated systems but also materials from the “urban mine”. Therefore, this course will also use this rigorous simulation basis to critically discuss environmental legislation as well as communicate these results to all stakeholders.

Initial competences
Basic thermodynamic, thermodynamic and kinetic knowledge in process metallurgy

Final competences
In the course the participants will learn:
1. Simulation of reactor types modelling and simulation of hydro- and pyrometallurgical reactors for primary and secondary resources and determination of mass and energy balances as well as minerals processing determination of ecological and economic footprint of reactors 2. Modelling of processing flowsheets develop processing flowsheets for non-ferrous metal containing resources modelling and simulation of hydro- and pyrometallurgical processing plants for primary and secondary non-ferrous resources as well as minerals processing determination of mass and energy balances of the complete flowsheet and determine optimal processing routes determination of ecological and economic footprint of complete flowsheets 3. Methods and tools use of simulation tools such as HSC Sim 9.0, FACTSAGE etc. and environmental software tools such as GaBi to evaluate different processing options create process designs and communicate results to a client and/or stakeholders e.g. NGO

Course size (nominal values; actual values may depend on programme)
Credits 6.0 Study time 180 h Contact hrs 75.0 h

Teaching languages

(Approved)
This course unit cannot be taken via a credit contract

This course unit cannot be taken via an exam contract

Teaching methods

Extra information on the teaching methods

S1 (SS): Block course / Lectures (1 SWS)
S1 (SS): Block course / Seminar (2 SWS)
S1 (SS): Block course / Practical Application (2 SWS)

Learning materials and price

References


Course content-related study coaching

Evaluation methods

Examination methods in case of periodic evaluation during the first examination period

Examination methods in case of periodic evaluation during the second examination period

Examination methods in case of permanent evaluation

Possibilities of retake in case of permanent evaluation

examination during the second examination period is possible

Calculation of the examination mark

(Approved)