Due to Covid 19, the education and evaluation methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora.

Vegetation Modelling (I002696)

Valid as from the academic year 2020-2021

Course Specifications

Due to Covid 19, the education and evaluation methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora.

Course offers and teaching methods in academic year 2020-2021

A (semester 2) English Gent

seminar: practical PC 11.25 h
room classes

lecturer

lecture 25.0 h

group work 1.25 h

microteaching 2.5 h

Course size (nominal values; actual values may depend on programme)

Credits 4.0 Study time 120 h Contact hrs 40.0 h

Course size (nominal values; actual values may depend on programme)

Credits 4.0 Study time 120 h Contact hrs 40.0 h

Course offerings and teaching methods in academic year 2020-2021

A (semester 2) English Gent

seminar: practical PC 11.25 h
room classes

lecturer

lecture 25.0 h

group work 1.25 h

microteaching 2.5 h

Lecturers in academic year 2020-2021

Verbeeck, Hans LA20 lecturer-in-charge

Offered in the following programmes in 2020-2021

Master of Science in Bioscience Engineering: Forest and Nature Management 4 A

Exchange Programme in Bioscience Engineering: Land and Forest management (master's level) 4 A

Teaching languages

English

Keywords

Vegetation models, ecological forecasting, upscaling

Position of the course

In the current Antropocene era vegetation is influenced by fast changing conditions worldwide. In this context, there is a large need for scientific information on the future response of forest and nature to these global changes. Vegetation models are important tools to address this demand. In this course vegetation models will be studied in detail as a tool for knowledge synthesis, upscaling, data-integration and forecasting. Multiple key processes are discussed and applied in practical simulation exercises with existing vegetation models at multiple scale levels. Attention is given to the use of vegetation models for research, policy support and ecosystem management.

Contents

Theory

Introduction

1. Vegetation modelling: conceptual framework, upscaling, model structure, model development

Biophysical and physiological models

2. Modelling the abiotic environment (light, microclimate)
3. Modelling of fluxes (carbon, water, energy), phenology

Modelling stand dynamics

4. Modelling growth and demography

5. Modelling biogeochemistry

Dynamic vegetation modelling

6. Plant functional types, communities, competition

(Approved)
8. Climate scenarios

Exercises:
simulation exercises with vegetation models touching upon multiple methodological aspects (initialisation, optimalisation, sensitivity, uncertainty)

Initial competences
This course builds on certain learning outcomes of the courses 'wetenschappelijk programmeren', 'ecologie', 'modelleren en simuleren van biosystemen', of the eindcompetenties warden op een andere manier verworven.

Final competences
1. Identify the different types of vegetation models
2. Understand the structure of process-based vegetation models
3. Explain key processes needed to simulate the response of vegetation to a changing environment
4. Perform simulation with existing vegetation models
5. Interpret and process vegetation model outputs
6. Appreciate the strength and weaknesses of vegetation models and their associated

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract
This course unit cannot be taken via an exam contract

Teaching methods
Group work, lecture, microteaching, seminar: practical PC room classes

Learning materials and price
Lecture handouts, selection of chapters from the reference books mentioned below

References
Climate Change and Terrestrial Ecosystem Modeling, Gordon Bonan, Cambridge University Press | 2019 | 437 pages

Ecological Forecasting, MC Dietze, Princeton University Press, 2017

Course content-related study coaching
Individual coaching is possible, including interactive via Ufora

Evaluation methods
end-of-term evaluation and continuous assessment

Examination methods in case of periodic evaluation during the first examination period
Oral examination

Examination methods in case of periodic evaluation during the second examination period
Oral examination

Examination methods in case of permanent evaluation
Skills test

Possibilities of retake in case of permanent evaluation
examination during the second examination period is possible in modified form

Calculation of the examination mark
60 % oral exam on theory, 40% skilltest
Students who eschew period aligned and/or non-period aligned evaluations for this course unit may be failed by the examiner.

(Approved)