Due to Covid 19, the education and evaluation methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora.

Course Specifications
Valid as from the academic year 2018-2019

High-speed Electronics (E033640)

Course size (nominal values; actual values may depend on programme)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Study time</th>
<th>Contact hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>180 h</td>
<td>60.0 h</td>
</tr>
</tbody>
</table>

Course offerings and teaching methods in academic year 2020-2021

A (semester 2)

- English
- Gent
- practicum 45.0 h
- lecture 30.0 h

B (semester 2)

- Dutch
- practicum 45.0 h
- guided self-study 30.0 h

Lecturers in academic year 2020-2021

- Bauwelinck, Johan
- Torfs, Guy

Offered in the following programmes in 2020-2021

<table>
<thead>
<tr>
<th>60.0 h</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>credits</td>
<td>offering</td>
</tr>
<tr>
<td>Bridging Programme Master of Science in Electrical Engineering (main subject Communication and Information Technology)</td>
<td>6</td>
</tr>
<tr>
<td>Bridging Programme Master of Science in Electrical Engineering (main subject Electronic Circuits and Systems)</td>
<td>6</td>
</tr>
<tr>
<td>Master of Science in Electrical Engineering (main subject Communication and Information Technology)</td>
<td>6</td>
</tr>
<tr>
<td>Master of Science in Electromechanical Engineering (main subject Control Engineering and Automation)</td>
<td>6</td>
</tr>
<tr>
<td>Master of Science in Electromechanical Engineering (main subject Electrical Power Engineering)</td>
<td>6</td>
</tr>
<tr>
<td>Master of Science in Electrical Engineering (main subject Electronic Circuits and Systems)</td>
<td>6</td>
</tr>
<tr>
<td>Master of Science in Electromechanical Engineering (main subject Maritime Engineering)</td>
<td>6</td>
</tr>
<tr>
<td>Master of Science in Electromechanical Engineering (main subject Mechanical Construction)</td>
<td>6</td>
</tr>
<tr>
<td>Master of Science in Electromechanical Engineering (main subject Mechanical Energy Engineering)</td>
<td>6</td>
</tr>
<tr>
<td>European Master of Science in Photonics</td>
<td>6</td>
</tr>
</tbody>
</table>

Teaching languages

Dutch, English

Keywords

High speed electronics, RF electronics, broadband analog electronics.

Position of the course

Second semester, first year of the master. High-speed Electronics deals with the design and modeling of microwave circuits and building blocks to create for example transmitters and receivers for mobile communication, GPS, and wireless and optical networks. The course builds on the acquired basic knowledge of electronic circuit analysis and analog electronics, but it confronts the designer with the challenges that originate from the high frequency at which the circuit elements and their interconnections work. This course provides insight in the underlying theory and presents practical hands-on approaches using professional design software and laboratory equipment.

Contents

(Approved)
• Concepts and definitions in time and frequency domain.
• Circuit analysis: Matrix representations, S parameters, power gain and stability.
• From lumped to distributed elements: high-frequency models of passive components, transmission lines, broadband components, matching networks.
• Modeling of active components: parasitic elements, non-linear models, speed limitations.
• Low noise amplifiers: Statistical properties of noise, physical noise sources, circuit representation, noise in linear circuits, LNA design.
• Power amplifiers: Linear power amplifiers (A,B), tuned class C, high efficiency power amplifiers D,E,F.
• Oscillators: oscillation conditions, phase noise, basic oscillator circuits, resonators and dielectric resonator oscillators
• Frequency conversion: Architectures of the super-heterodyne, mixing basics, non-linear systems as mixers, multiplying mixers, diode mixers.
• Recent research: Circuit examples for wireless networks, broadband wired networks, fast interconnects and instrumentation applications,

Initial competences
Basic analog electronics, small signal analysis of transistor circuits, notions on electromagnetism.

Final competences
1 Understand and apply high-frequency models, transmission lines, S-parameters, noise parameters and impedance matching.
2 Analyze and design of active and passive high-speed circuits

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract
This course unit cannot be taken via an exam contract

Teaching methods
Guided self-study, lecture, practicum

Learning materials and price
Handbook, slides and lab notes.

References

Course content-related study coaching

Evaluation methods
end-of-term evaluation and continuous assessment

Examination methods in case of periodic evaluation during the first examination period
Oral examination

Examination methods in case of periodic evaluation during the second examination period
Oral examination

Examination methods in case of permanent evaluation
Participation, assignment, report

Possibilities of retake in case of permanent evaluation
examination during the second examination period is not possible

Extra information on the examination methods
During examination period: oral open-book exam with written preparation
During semester: graded lab sessions, for which a second chance is not possible.
The lab sessions score obtained will also count for the second chance exam if any.

Calculation of the examination mark
The oral exam has a weight of 70% in the total score, with a minimum score of 8/20.
The graded lab sessions count for the remaining 30%.
The score of the oral exam will not contribute to the final score when it is below the minimum score.

(Approved)