Due to Covid 19, the education and evaluation methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora.

Course Specifications
Valid as from the academic year 2015-2016

Course size
(nominal values; actual values may depend on programme)
Credits 4.0 Study time 120 h Contact hrs 30.0 h

Course offerings and teaching methods in academic year 2020-2021
A (semester 1) English Gent lecture 25.0 h
demonstration 5.0 h

Lecturers in academic year 2020-2021
Le Thomas, Nicolas TW05 lecturer-in-charge
Muyldermans, Serge VUB co-lecturer

Offered in the following programmes in 2020-2021 credits offering
Bridging Programme European Master of Science in Photonics 4 A
Master of Science in Biomedical Engineering 4 A
International Master of Science in Biomedical Engineering 4 A
Master of Science in Biomedical Engineering 4 A
European Master of Science in Photonics 4 A

Teaching languages
English

Keywords
biophotonics

Position of the course
Exposing the student to various basic concepts in the field of biophotonics, positioning them in an interdisciplinary context

Contents
1 Introduction: necessity of biophotonics, public health, eco preservation, maritime, industrial, domestic, medical, biotechnology, aquatic environments
2 Micro-organisms: bacteria, viruses, protozoa, algae, phylogeny, structure and function
3 Fundamental biomolecules: nucleic acids, amino acids, DNA/RNA replication, transcription, translation, antibodies, antigens, enzymes, fatty acids, carbohydrates
4 Physiology: immune system, nervous system
5 Flow cytometry: principle and applications, cell enumeration, discrimination, heterotrophic, fluorescent in-situ, hybridisation, DNA probes, cell sorting advantages and disadvantages
6 PCR techniques: DNA amplification, molecular probes, real time PCR, DNA hybridisation
7: Microscopy: bright field microscopy, phase contrast microscopy, dark field microscopy, differential interference contrast microscopy, fluorescence microscopy, confocal microscopy, atomic force microscopy, electron microscopy
8 Optical coherence tomography: principles, time-domain OCT, fourier domain OCT, swept-source OCT, optical properties of tissues, system aspects, applications
9 Labeled sensors: sensor requirements, ELISA tests, gold nanoparticle labels, quantum dot labels, bead-based assays, padlock probes
10 Label-free sensors: advantages, surface plasmon sensors, evanescent wave sensors, Mach-Zehnder interferometers, resonant cavities
11 Lab-on-a-chip: principles, DNA microarrays, introduction to microfluidics

Initial competences
bachelor level physics

(Approved)
Final competences
1. Getting insight in the basics of biology.
2. Acquiring understanding in the principles behind microscopy, cytometry, PCR techniques, imaging techniques, labeled and label-free sensors, lab-on-a-chip.

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract
This course unit cannot be taken via an exam contract

Teaching methods
Demonstration, lecture

Extra information on the teaching methods
Classroom lectures: part of the lectures will be given in UGent, part of the lectures in the VUB, but there is the option of teleclassing.

Learning materials and price
Course notes, copies of slides

References

Course content-related study coaching

Evaluation methods
end-of-term evaluation and continuous assessment

Examination methods in case of periodic evaluation during the first examination period
Written examination with open questions

Examination methods in case of periodic evaluation during the second examination period
Written examination with open questions

Examination methods in case of permanent evaluation
Participation

Possibilities of retake in case of permanent evaluation
examination during the second examination period is possible

Calculation of the examination mark
100% exams

(Approved)