Due to Covid 19, the education and evaluation methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora.

Lecturers in academic year 2020-2021

Kuyken, Bart

Course offerings and teaching methods in academic year 2020-2021

A (semester 1)

English

Gent

Contact hrs

lecture 15.0 h

seminar: coached exercises 5.0 h

self-reliant study activities 1.25 h

Offered in the following programmes in 2020-2021

Bridging Programme European Master of Science in Photonics

European Master of Science in Photonics

Teaching languages

English

Keywords

optics, non-linear optics

Position of the course

This course will familiarize the student with the concepts and methods of non-linear optics and with its applications. Through this course the student will be able to start reading the specialized literature and to start research in this field.

This course is taught at UGent in the first semester. A teleclassing system is used to limit the student travel between VUB and UGent.

Contents

• Introduction
• Origin of optical non-linearity: Microscopic model, Resonant and non-resonant non-linearity
• Polarisation and susceptibility: General description of macroscopic polarisation, Symmetry properties of non-linear susceptibility, Non-linear wave equation (slowly varying envelope approximation)
• Second order effects: Coupled wave equations, Phase matching methods, Manley-Rowe, Sum frequency and second harmonic generation, Difference frequency generation and parametric amplification
• Third order effects: Four-wave mixing, Intensity dependent refractive index, Self-focusing, self-phase modulation, bistability, supercontinuum and comb generation
• Non-linear scattering: Spontaneous and stimulated scattering, phonons, Brillouin scattering, Raman scattering
• Resonant (or indirect) optical non-linearities: non-linearities induced by plasma effect, band filling effects, thermo-optic effect, optical forces etc
• Non-linear optical materials: glasses, semiconductors, ferroelectrics, polymers

Initial competences

In depth knowledge of linear wave propagation, and of linear optical properties of materials.

Final competences

(Approved)
1. Understanding of the most important phenomena in non-linear optics.
2. Knowledge of the most important non-linear materials and understanding of the order of magnitude of typical non-linear effects.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment.

Conditions for exam contract

This course unit cannot be taken via an exam contract.

Teaching methods

Lecture, self-reliant study activities, seminar: coached exercises.

Learning materials and price

Non-linear optics: syllabus (in English).

References

- Optical waves in Crystals, Propagation and control of laser radiation door Amnon Yariv en Pochi Yeh.

Course content-related study coaching

Evaluation methods

end-of-term evaluation and continuous assessment.

Examination methods in case of periodic evaluation during the first examination period

Open book examination, oral examination.

Examination methods in case of periodic evaluation during the second examination period

Open book examination, oral examination.

Examination methods in case of permanent evaluation

Skills test.

 Possibilities of retake in case of permanent evaluation

examination during the second examination period is possible in modified form.

Extra information on the examination methods


Calculation of the examination mark

(Approved)