Due to Covid 19, the education and evaluation methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora.

Lecturers in academic year 2020-2021

- Moeneclaey, Marc (TW07)
- Jacobs, Lennert (TW07)

Course offerings and teaching methods in academic year 2020-2021

<table>
<thead>
<tr>
<th>Course level</th>
<th>Language</th>
<th>Credits</th>
<th>Study time</th>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (semester 1)</td>
<td>Dutch</td>
<td>6.0</td>
<td>180 h</td>
<td>60.0 h</td>
</tr>
<tr>
<td>B (semester 1)</td>
<td>English</td>
<td>6.0</td>
<td>180 h</td>
<td>60.0 h</td>
</tr>
</tbody>
</table>

Offered in the following programmes in 2020-2021

- Bridging Programme Master of Science in Electrical Engineering (main subject Communication and Information Technology)
 - 6 B
- Bridging Programme Master of Science in Electrical Engineering (main subject Electronic Circuits and Systems)
 - 6 B
- Master of Science in Electrical Engineering (main subject Communication and Information Technology)
 - 6 B
- Master of Science in Electromechanical Engineering (main subject Control Engineering and Automation)
 - 6 B
- Master of Science in Electromechanical Engineering (main subject Electrical Power Engineering)
 - 6 B
- Master of Science in Electrical Engineering (main subject Electronic Circuits and Systems)
 - 6 B
- Master of Science in Electromechanical Engineering (main subject Maritime Engineering)
 - 6 B
- Master of Science in Electromechanical Engineering (main subject Mechanical Construction)
 - 6 B
- Master of Science in Electromechanical Engineering (main subject Mechanical Energy Engineering)
 - 6 B
- Master of Science in Computer Science Engineering
 - 6 A
- Master of Science in Computer Science Engineering
 - 6 B
- Master of Science in Electrical Engineering
 - 6 A
- European Master of Science in Photonics
 - 6 B

Teaching languages

- Dutch, English

Keywords

- modulation, detection, channel estimation, equalization

Position of the course

The course aims at providing insight in the operation and the performance of optimum and sub optimum receivers for digital communication over various types of channels. Topics are : detection, channel estimation, equalization, multi-user communication, modulation for dispersive channels.

Contents

- Decision and estimation theory: Likelihood function, decision and estimation according to ML and MAP criteria

(Approved)
• Channel models: Static channels, fading channels, coherence time, coherence bandwidth
• Detection of digital information: Time, frequency and spatial diversity; equalization (linear, decision-feedback, Viterbi)
• Multiuser communication: FDM(A), TDM(A), FDD, TDD Modulations suited for dispersive channels: Spread-spectrum and CDM(A), multiuser interference; OFDM, cyclic prefix
• Estimation of channel parameters

Initial competences
Communication Theory: partim Communication Techniques (or equivalent)

Final competences
1 To have insight in the operation of algorithms for detection, equalization and channel estimation.
2 To apply techniques for multiuser communication.
3 To apply modulation techniques for transmission over dispersive channels and to determine their performance.
4 To estimate the effect of channel properties (fading, dispersion) on the reliability of the communication link.

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract
This course unit cannot be taken via an exam contract

Teaching methods
Guided self-study, group work, lecture, seminar: coached exercises, online group work, online lecture, online seminar: coached exercises

Extra information on the teaching methods
Part of the course is taught during classical lectures. During the workshops, exercises are solved by the students under the supervision of a teacher. The students independently acquire knowledge for another part of the course; the students independently carry out a group assignment related to this part, with interim supervision being provided on request.
Because of COVID19 modified work formats (online or on campus) can be rolled out if necessary.

Learning materials and price
lecture notes (about 10 EUR)

References
• H. Meyr, M. Moeneclaey, S.A. Fechtel, Digital Communication Receivers - Synchronization, channel estimation, and signal processing. J. Wiley

Course content-related study coaching
The lecturer and assistants are available during contact hours, on appointment and via e-mail.

Evaluation methods
end-of-term evaluation and continuous assessment

Examination methods in case of periodic evaluation during the first examination period
Written examination, open book examination

Examination methods in case of periodic evaluation during the second examination period
Written examination, open book examination

Examination methods in case of permanent evaluation
Assignment
Possibilities of retake in case of permanent evaluation
examination during the second examination period is possible in modified form

Extra information on the examination methods
During examination period: written open-book exam. During semester: graded team work. Frequency: 1 report at end of semester.

Calculation of the examination mark
First examination period: non periodical (graded team work) 30%; periodical (exam)

(Approved)
70%. If both scores are not at least 8/20, the student cannot pass for the course. The end score is then at most 7/20.
Second examination period: written exam counts for 70%, score from team work in first examination period counts for 30%. If the score from the team work in the first examination period is less than 8/20, the student will have to pass an additional (individual) oral examination on the team work. If the score of the written examination and, if applicable, of the additional oral examination is not at least 8/20, the student cannot pass for the course. The end score is then at most 7/20.