Course Specifications
Valid as from the academic year 2019-2020

Design of Manufacturing and Service Operations (E004701)

Due to Covid 19, the education and evaluation methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora.

Course size (nominal values; actual values may depend on programme)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Study time</th>
<th>Contact hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>180 h</td>
<td>60.0 h</td>
</tr>
</tbody>
</table>

Course offerings and teaching methods in academic year 2020-2021

A (semester 2) English Gent
- seminar: coached 10.0 h exercises
- seminar 20.0 h
- lecture 10.0 h
- guided self-study 20.0 h

B (semester 2) Dutch
- seminar 20.0 h
- guided self-study 20.0 h
- seminar: coached exercises 10.0 h

Lecturers in academic year 2020-2021

Gautama, Sidharta TW18 lecturer-in-charge
Raa, Birger TW18 co-lecturer

Offered in the following programmes in 2020-2021

<table>
<thead>
<tr>
<th>crdts</th>
<th>offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
</tr>
</tbody>
</table>

Offered in the following programmes in 2020-2021

Bridging Programme Master of Science in Industrial Engineering and Operations Research	6	B
Bridging Programme Master of Science in Industrial Engineering and Operations Research	6	A
Master of Science in Industrial Engineering and Operations Research	6	B
European Master of Science in Photonics	6	A
Master of Science in Industrial Engineering and Operations Research	6	A

Teaching languages
Dutch, English

Keywords
Facility design methods, production systems, service operations, lean manufacturing

Position of the course
In-depth study of the techniques to design operational systems and to evaluate them. Both manufacturing and service organisations are covered. This course contains a multidisciplinary project that combines various topics and competences from the IEOR master.

Contents
- Facilities Design: flow analysis, clustering material flows, cell design, manual and computer-based layout techniques
- In-plant logistics, line supply systems, parts picking
- Warehouse Design: manual and technological solutions for storage, material handling, and order picking, layout methods
- Design of service processes and facilities
- Lean Thinking in manufacturing and services

Initial competences
Know how to apply the concepts taught in the courses: 'Manufacturing Planning and Control', 'Methods Engineering and Work Measurement', 'Operations Research Models'

(Approved)
and Methods', 'Simulation of Manufacturing and Service Systems'.

Final competences
1. To be able to design operational systems; map, analyse and improve existing systems.
2. Make a design as a team, validate it and defend it before a jury.
3. Knowledge of formal calculation methods to analyze and organize material flow.
4. Independently acquire new knowledge and methods through a Blended Learning framework

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract
This course unit cannot be taken via an exam contract

Teaching methods
Guided self-study, lecture, seminar, seminar: coached exercises

Extra information on the teaching methods
Group work = integrating project to design the logistics of a manufacturing system in teams of 3 to 4 students.
Theoretical material will be offered as blended learning.

Learning materials and price
• Course reader (10 euro).
• Blended learning material on the electronic learning platform

References
• Warehouse and distribution science (Version 0.95), J. Bartholdi III, L. Hackman, 2011, Georgia Tech, www.warehouse-science.com

Course content-related study coaching
Teachers are available during the project sessions and by appointment outside these hours.

Evaluation methods
end-of-term evaluation and continuous assessment

Examination methods in case of periodic evaluation during the first examination period
Written examination with open questions

Examination methods in case of periodic evaluation during the second examination period
Written examination with open questions, oral examination, simulation, report

Examination methods in case of permanent evaluation
Oral examination, assignment, simulation, report

Possibilities of retake in case of permanent evaluation
examination during the second examination period is possible in modified form

Extra information on the examination methods
During examination period: written exam with closed book.
During semester: graded team work based on written report and oral presentation and defense.
Students must pass each exam part on its own in order to pass in total for this course.

Calculation of the examination mark
Students must pass both exam parts separately. When one fails one part, only this one should be retaken in the second session.
End score when passed on both exam parts: Team work: 50%. Written exam score: 50%.
End score when failed on at least one part: Failed part: 99%. Other part: 1%.

Facilities for Working Students
Design project is allowed to be done individually.

(Approved)