Course Specifications
Valid as from the academic year 2020-2021

Due to Covid 19, the education and evaluation methods may vary from the information displayed in the schedules and course details. Any changes will be communicated on Ufora.

Course size
(nominal values; actual values may depend on programme)
Credits 4.0
Study time 120 h
Contact hrs 37.5 h

Course offerings and teaching methods in academic year 2020-2021
A (semester 2) English Gent

<table>
<thead>
<tr>
<th>group work</th>
<th>seminar: practical PC</th>
<th>lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.0 h</td>
<td>2.5 h</td>
<td>20.0 h</td>
</tr>
</tbody>
</table>

Lecturers in academic year 2020-2021
Verschuren, Dirk WE11 lecturer-in-charge
Boeckx, Pascal LA24 co-lecturer
Bonte, Dries WE11 co-lecturer
Miralles, Diego LA20 co-lecturer
Salomon Moreno, Roberto Luis LA21 co-lecturer
Verbeeck, Hans LA20 co-lecturer

Offered in the following programmes in 2020-2021

Master of Science in Teaching in Science and Technology (main subject Biology)	4	A
Master of Science in Physical Land Resources (main subject Land Resources Engineering)	4	A
Master of Science in Physical Land Resources (main subject Land Resources Engineering)	4	A
International Master of Science in Soils and Global Change (main subject Physical Land Resources and Global Change)	4	A
Master of Science in Physical Land Resources (main subject Soil Science)	4	A
Master of Science in Physical Land Resources (main subject Soil Science)	4	A
Master of Science in Biology	4	A
Exchange Programme in Biology (master's level)	4	A

Teaching languages
English

Keywords
Climate change, greenhouse effect, CO2 emissions, biosphere impacts, carbon cycle, climate prognosis, IPCC, adaptation, mitigation, sustainable development

Position of the course
This course provides a broad multi-disciplinary overview of the topic of anthropogenic climate change with emphasis on the processes of climate change itself and of its impacts on carbon cycling, the abiotic environment, the biosphere and the human environment. Biosphere impacts are treated at all levels of plant/animal biology: physiology, populations and species, structure and functioning of ecosystems. Attention is given to the various methods of climate-change research and the associated uncertainty in climate-change prognoses, and to strategies of adaptation and mitigation. By being presented with the complete picture in a single course, students learn to judge the relative importance of different processes at different spatial and temporal scales, develop appreciation for the different perspectives of different stakeholder groups, and become more comfortable with the uncertainties linked to particular positions.

(Approved)
1. Aspects of general climatology relevant to climate change; temperature structure of the atmosphere, atmospheric circulation, diverse feedbacks.
3. The carbon cycle: main carbon reservoirs and fluxes, fossil fuels and energy, human perturbation of the carbon cycle.
4. Air pollution and global dimming.
7. Hydrological processes relevant to climate change, and impacts of global warming on the hydrological cycle.
8. Plant ecophysiology and climate-change effects on C3/C4 competition.
9. Role of ecosystems/vegetation in the global carbon cycle.
10. Earth system models (IPCC-GCMs) and land-surface models (DGVMs), with application to climate change impacts on tropical rainforests.
11. Impacts of global warming on the biosphere: species distributions, phenology, habitat loss, exotic/invasive species and diseases, evolutionary aspects.
12. Climate change and biological conservation.
14. Impacts on the human environment with emphasis on global food security, differentiating between western and developing countries. Practical exercises involving computer exercises exploring the effects of various climate-change related scenarios; and student presentations and discussion on topics of current or past controversy in climate change.

Initial competences

Having successfully completed an introductory course in ecology, e.g. Ba1 Ecologie in Biology or equivalent; or having acquired the relevant knowledge by personal study or other means.

Final competences

1. Demonstrate advanced knowledge of the causes of recent (natural and anthropogenic) climate change in relation to long-term climate history, of all relevant aspects of the carbon cycle, and of the opogenic climate change on the abiotic earth environment, the biosphere (fysiology, species distributions, ecosystems) and the human environment.
2. Demonstrate basic knowledge of the potential and limitations of diverse observational and paleoclimatological methods of climate study, and of the climate models used in prognoses over the 21st century.
3. Display a science-based critical attitude towards new data, interpretations, theories and models of anthropogenic climate change and the historical interaction between humans, climate and nature.
4. Demonstrate ability to process, combine, evaluate, and synthesize in a structured manner complex information from the primary scientific literature of multiple relevant sub-disciplines.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment.

Conditions for exam contract

This course unit cannot be taken via an exam contract.

Teaching methods

Group work, lecture, self-reliant study activities, seminar: practical PC room classes.

Extra information on the teaching methods

Lectures: Powerpoint presentations with text and figures, made available beforehand on Ufora.
Guided practical exercises: one afternoon of interactive computer class on climate-change modeling, with report.
Teamwork: group assignments involving a literature study on topics of debate in the field of global change, synthesized in a PPT presentation.
Independent work: homework around myths on climate change, with written report.
Due to COVID19, alternative teaching methods may be implemented.

Learning materials and price

and
~50 pp. primary literature made available via Ufora. Total Estimated Cost: 40€.

References

Course content-related study coaching
Supervision of computer-aided interactive exercises. Supervision and guidance of
group assignment. Personal contact with teaching staff by appointment.

Evaluation methods
end-of-term evaluation and continuous assessment

Examination methods in case of periodic evaluation during the first examination period
Written examination with open questions

Examination methods in case of periodic evaluation during the second examination period
Written examination with open questions

Examination methods in case of permanent evaluation
Oral examination, assignment

Possibilities of retake in case of permanent evaluation
examination during the second examination period is possible

Extra information on the examination methods
PE: On-campus exam with questions testing both knowledge of and insight in the
material presented in lectures and in the presentations of fellow students. Examination
in the 2nd examination period is possible.
On-line exam is exceptionally possible with valid reason, e.g. COVID19-related.
NPE: Evaluation of the group presentation and discussion abilities of the
student regarding both the personal and group assignments. Students who miss the
non-periodical evaluation cannot pass for the course. A 2nd chance for evaluation is
offered in modified form between the 1st and 2nd examination period.

Calculation of the examination mark
Period-bound theory exam 60%. Not period-bound evaluations (report and discussion
homework, report climate-modelling exercises; presentation and discussion of group
assignment) 40%

Facilities for Working Students
1. Possible exemption from educational activities requiring student attendance
2. Possible rescheduling of the exam to a different time in the same academic year

(Approved)