From the academic year 2016-2017 up to and including the Course Specifications

Embedded prototyping (E640078)

Course size
(nominal values; actual values may depend on programme)

Credits 6.0 Study time 180 h Contact hrs 60.0 h

Course offerings and teaching methods in academic year 2019-2020

A (semester 1) Dutch lecture 10.0 h
integration seminar 25.0 h
group work 25.0 h

Lecturers in academic year 2019-2020

wyffels, Francis TW06 lecturer-in-charge
Verstockt, Steven TW06 co-lecturer

Offered in the following programmes in 2019-2020

Master of Science in Electronics and ICT Engineering Technology (main subject Electronics Engineering) 6 A
Master of Science in Electronics and ICT Engineering Technology (main subject MIT) 6 A

Teaching languages

Dutch

Keywords

Embedded prototyping, sensor, actuator, prototype, embedded electronics

Position of the course

This course is a cooperation with the industrial design education. The student works in a team on the design of a prototype and realizes the intelligence of the product. This can be a hardware and/or software design. Within the course, students learn how they can make creative use of sensors, actuators and microprocessors to design interactive products.

Contents

This course is a cooperation with the division "Industrial science" with the course "Mechatronic Design". Implementing electronics in new products, designed by the students of industrial science, is the mean focus for this course. Electronics for embedded systems is the integration of both software and hardware with the purpose to improve the intelligence of the product/application. Depending of the experience of the students they can choose to work on a software or hardware part or both of the design.

Initial competences

Competences described in the courses:
• Embedded Systems
• Computer architecture

Final competences

1 Can think conceptual, analytical and problem solving targeted at different levels of abstraction
2 Can solve complex problems in an effective way
3 Can work together in a multidisciplinary team

(Approved)
4 Can use the competences from digital electronics and informatics to create a realistic design
5 To learn, assimilate, implement and use new technologies and/or theories that are relevant to the research and this in a creative and original way
6 Being able to compare and select different computational units.

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract
This course unit cannot be taken via an exam contract

Teaching methods
Group work, lecture, integration seminar

Extra information on the teaching methods
Theory: lectures
Project: group work

Learning materials and price
- powerpoint
- extra documentation on Minerva

References

Course content-related study coaching
Students can get extra explanation:
- during the labsessions
- individual, after appointment
- during the organized explanation sessions

Evaluation methods
end-of-term evaluation

Examination methods in case of periodic evaluation during the first examination period
Oral examination, report

Examination methods in case of periodic evaluation during the second examination period
Oral examination, report

Examination methods in case of permanent evaluation

Possibilities of retake in case of permanent evaluation
not applicable

Extra information on the examination methods
First examination period:
PE1 - Report + presentation with oral discussion
Second examination period
PE2 - Rework of a part of the design: Report + presentation with oral discussion

Calculation of the examination mark
100%: report + presentation with oral discussion
If exam in the second examination period, then 80% of the result is transferred.