Course Specifications
Valid as from the academic year 2019-2020

Course size

<table>
<thead>
<tr>
<th>Credits</th>
<th>Study time</th>
<th>Contact hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>180 h</td>
<td>60.0 h</td>
</tr>
</tbody>
</table>

Course offerings and teaching methods in academic year 2019-2020

A (semester 2)

<table>
<thead>
<tr>
<th>English</th>
<th>practicum</th>
<th>20.0 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture</td>
<td>30.0 h</td>
<td></td>
</tr>
<tr>
<td>seminar: coached exercises</td>
<td>10.0 h</td>
<td></td>
</tr>
</tbody>
</table>

Lecturers in academic year 2019-2020

Madhu, Nilesh

TW06 lecturer-in-charge

Offered in the following programmes in 2019-2020

Bachelor of Science in Engineering (main subject Electrical Engineering)	6	A
Bachelor of Science in Electrical Engineering	6	A
Master of Science in Computer Science Engineering	6	A
Master of Science in Computer Science Engineering	6	A

Teaching languages

English

Keywords

signal processing, digital filters, DFT, spectral analysis, non-stationary signals and systems

Position of the course

Learn how to apply signal models for the solution of diverse problems in signal processing. Learn to design signal processing systems from specifications.

Contents

- Signal models: Signal spaces, signal transformations, applications
- Digital-filter design: IIR and FIR filters; multirate filtering
- The DFT and its applications: FFT, fast convolution, filtering in frequency domain, cepstrum
- Spectral signal analysis
- Non-stationary signals and systems

Initial competences

This course builds further upon the concepts introduced in the course “Systems and Signal Analysis”

Final competences

1. Understand and correctly interpret signal processing methods and models
2. Understand and apply digital filter design methods
3. Convert a realistic problem statement into signal processing system specifications
4. Selection of the best design method for accomplishing certain system requirements
5. Inventarisation and comparison of suitable methods for solving a specific problem

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

(Approved)
Teaching methods
Lecture, practicum, seminar: coached exercises

Learning materials and price
Syllabus (distributed by VTK), slides (on the electronic learning platform).

References

Course content-related study coaching
The instructor is available for discussion and clarifications before and after the class. He may also be contacted by email.

Evaluation methods
end-of-term evaluation and continuous assessment

Examination methods in case of periodic evaluation during the first examination period
Written examination with open questions

Examination methods in case of periodic evaluation during the second examination period
Written examination with open questions

Examination methods in case of permanent evaluation
Report

Possibilities of retake in case of permanent evaluation
Examination during the second examination period is not possible

Extra information on the examination methods
During examination period: Closed-book exam. However: students are allowed to bring with them four (4) A4-sheets of paper (double-sided) with handwritten notes. No photocopies, printouts etc. allowed.
During semester: graded project reports. Second chance: Not possible

Calculation of the examination mark
Final score is based on a weighted average of the score obtained for the computer projects and the score obtained in the final exam.
Weight of computer projects = 1/4
Weight of final exam = 3/4

(Approved)