Course Specifications
Valid as from the academic year 2017-2018

Course size
(nominal values; actual values may depend on programme)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Study time</th>
<th>Contact hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>90 h</td>
<td>20.0 h</td>
</tr>
</tbody>
</table>

Course offerings and teaching methods in academic year 2019-2020

A (semester 1) English lecture 20.0 h

Lecturers in academic year 2019-2020

<table>
<thead>
<tr>
<th>Lecturer</th>
<th>Role</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Troch, Marleen</td>
<td>lecturer-in-charge</td>
<td>WE11</td>
</tr>
<tr>
<td>De Clerck, Olivier</td>
<td>co-lecturer</td>
<td>WE11</td>
</tr>
</tbody>
</table>

Offered in the following programmes in 2019-2020

<table>
<thead>
<tr>
<th>Master of Science in Marine and Lacustrine Science and Management</th>
<th>credits</th>
<th>offering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>A</td>
</tr>
</tbody>
</table>

Teaching languages

English

Keywords

Structural biodiversity, functional biodiversity, biomarkers, primary production, plankton, benthos, marine mammals

Position of the course

Advanced course to unravel the biodiversity of aquatic higher organisms operating in crucial units of food webs. This course aims to give insight in structural and functional aspects of biodiversity and is based on knowledge of marine and lacustrine organisms and their environment (‘Marine and Lacustrine Biology’).

Contents

Starting from an overall aquatic food web, the course will give: a general approach of actual research topics as

- structural biodiversity (spatial levels) and its calculation
- functional biodiversity with a more detailed approach of key players in aquatic food webs:
 - primary producers: marine photosynthetic organisms (macroalgae, mangroves, seagrasses and scleractinian corals), ecological roles and ecophysiology
 - zooplankton
 - benthos
- top predators and marine mammals in terms of their function, their organisation and their morphological adaptations.

Initial competences

Basic knowledge of the biology of aquatic organisms (both plants and animals).

Final competences

1. To know how to calculate and interpret biodiversity.
2. To get knowledge on the morphological adaptations of aquatic organisms.
3. To understand their functioning in order to maintain aquatic biodiversity in their environments.

Conditions for credit contract

Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract

This course unit cannot be taken via an exam contract

(Approved)
Teaching methods
Lecture

Extra information on the teaching methods
Lectures are always followed by short interactive discussion sessions.

Learning materials and price
Cost: 20.0 EUR for syllabus, copies of research papers additional handbooks (not compulsory)

References
Dring Matthew J. Biology of marine plants.

Course content-related study coaching

Evaluation methods
end-of-term evaluation

Examination methods in case of periodic evaluation during the first examination period
Oral examination

Examination methods in case of periodic evaluation during the second examination period
Oral examination

Examination methods in case of permanent evaluation

Possibilities of retake in case of permanent evaluation
not applicable

Extra information on the examination methods
Oral examination with written preparation. There are typically 2-4 questions for each part (botany, zoology). The questions seek an equilibrium between knowledge and understanding.

Calculation of the examination mark
The final score is calculated as 1/3 (De Clerck) and 2/3 (De Troch).