Course Specifications
Valid in the academic year 2018-2019

Course size
(nominal values; actual values may depend on programme)

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Study time</td>
<td>75 h</td>
</tr>
<tr>
<td>Contact hrs</td>
<td>30.0 h</td>
</tr>
</tbody>
</table>

Course offerings and teaching methods in academic year 2018-2019

A (semester 1)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td></td>
</tr>
<tr>
<td>group work</td>
<td>1.0 h</td>
</tr>
<tr>
<td>lecture</td>
<td>15.0 h</td>
</tr>
<tr>
<td>excursion</td>
<td>4.0 h</td>
</tr>
<tr>
<td>practicum</td>
<td>9.0 h</td>
</tr>
<tr>
<td>demonstration</td>
<td>1.0 h</td>
</tr>
</tbody>
</table>

Lecturers in academic year 2018-2019

Radwanska, Magdalena

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR01</td>
<td>lecturer-in-charge</td>
</tr>
</tbody>
</table>

Offered in the following programmes in 2018-2019

<table>
<thead>
<tr>
<th>Programme</th>
<th>crdts</th>
<th>offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of Science in Environmental Technology</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Bachelor of Science in Food Technology</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Bachelor of Science in Molecular Biotechnology</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Joint Section Bachelor of Science in Environmental Technology,</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Food Technology and Molecular Biotechnology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Teaching languages

English

Keywords

Animal Kingdom, Evolution and Biodiversity of animals, Taxonomy, Anatomy, Physiology

Position of the course

The Animal Biology course constitutes a basic course in biology with emphasis on biodiversity and adaptations. The course gives an introduction to the taxonomy, morphology and anatomy of animals with a strong emphasis on biological evolution, with elements of ecology. Typical features of the taxa are discussed as well as underlying relationship in anatomy. The course includes an introduction to the underlying scientific principles of human evolution.

Contents

2. Comparative Animal Anatomy and Physiology.
4. Triploblastic Protostomia (Lophotrochozoa): Platyhelminthes (Flat Worms), Rotifera, Nemertea (Ribbon Worms), Mollusca, Annelida (Segmented Worms).
5. Triploblastic Protostomia (Ecdysozoa): Nematoda (Round Worms), Arthropoda.

Initial competences

Knowledge and understanding of the structure and function of the genetic material and proteins are required as well as cellular and microbial function. These competences are acquired in the courses such as General Biology and Microbiology.

Final competences

(Approved)
Students have a basic understanding of the Animal Kingdom and basic features of the various taxa that constitute it.
The student will:
- understand the basic taxonomy, morphology and anatomy of animals;
- know the basic principles of various life cycles and ecology;
- be able to recognize actual living organisms and place them in the taxonomy;
- be aware of public debates surrounding genetic analysis of human evolution and evolution in general;
- be aware of the complementarity of biochemistry, genetics, microbiology, molecular biology, and biological evolution.

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract
This course unit cannot be taken via an exam contract

Teaching methods
Demonstration, excursion, group work, lecture, practicum

Learning materials and price
Learning material is provided as PowerPoint presentations together with a dedicated booklet containing protocols and background information supporting practical courses. Movies are used to explain basic principles underlying animal diversity and adaptations. All this material is available on Minerva. An textbook on the integrated principles of Zoology is followed with respect to the content. The course includes a field excursion to the local ecology park.

References

Course content-related study coaching
Practical courses are designed to directly support the principles outlined in the lectures. The latter contain wrap-up and feedback sessions. This, in turn facilitates study coaching.

Evaluation methods
end-of-term evaluation and continuous assessment

Examination methods in case of periodic evaluation during the first examination period
Written examination with open questions, report

Examination methods in case of periodic evaluation during the second examination period
Written examination with open questions, report

Examination methods in case of permanent evaluation
Written examination with open questions, report

Possibilities of retake in case of permanent evaluation
examination during the second examination period is possible

Extra information on the examination methods
Participation in the practical courses is mandatory. The final exam will have open questions that directly relate to the lectures and experiments performed during practical courses.

Calculation of the examination mark
Written examination with open questions related to the lecture course material - 80%
Written examination with open questions related to the practical course exercises - 10%
Practical course report - 10%

Facilities for Working Students
Study rooms and practical course rooms are available.