Course Specifications
From the academic year 2017-2018 up to and including the
Electrical and Electronic Principles (E610015)

Course size
(nominal values; actual values may depend on programme)
Credits 6.0 Study time 180 h Contact hrs 60.0 h

Course offerings and teaching methods in academic year 2018-2019
A (semester 2) Dutch practicum 24.0 h
lecture 36.0 h
demonstration 2.0 h

Lecturers in academic year 2018-2019
Cottegnie, Wesley TW08 staff member
Dereyne, Steve TW08 staff member
Vanwalleghe, Bart TW08 staff member
Willems, Brecht TW06 staff member
Stockman, Kurt TW08 lecturer-in-charge
Beke, Johan TW06 co-lecturer

Offered in the following programmes in 2018-2019 crdts offering
Bachelor of Science in Industrial Design Engineering Technology 6 A
Bachelor of Science in Bioindustrial Sciences 6 A
Bachelor of Science in Chemical Engineering Technology 6 A
Bachelor of Science in Environmental Engineering Technology 6 A

Teaching languages
Dutch

Keywords
Electrotechnics, electronics, microcontrollers, diodes, programming, electric motor, transformer, design

Position of the course
This course studies the operation of simple electric and electronic applications. The basic building blocks are studied in detail and their application is discussed. Techniques to analyse systems are also studied. Special attention is paid to the study of: Diodes, rectifiers, electric motors, transformers, measurement techniques and safety aspects.
The electric lab sessions focus on simple measurement techniques for energy and electric power. Also contactor schemes are studied.
In the electronic lab, an arduino microcontroller board is used to study the use of digital and analog inputs, outputs, PWM, serial communication, ... After an introductory session, the students build a real project under the supervision of the lab assistants.

Contents
• Introduction
 Safety aspects, electric schemes, block diagrams, timing diagrams
 Analog building blocks: semiconductor technology
 • Construction and operation of diodes and transistors
 • rectifiers
 • transistor used as switch and amplifier
 • special diodes: LED
 Digital building blocks: combinatorial and sequential logic
 • Analog - digital conversion
 • Basic digital logic elements
 • Introduction to Boolean Algebra

(Approved)
• Flip-Flop: digital memory
• Introduction to state diagrams, timing diagrams

Electronic applications:
- Light technology: TL lamps

Electric applications
- Construction and operation of transformers
- switched power supplies
- Electric motors, inductiom motor and universal motor

Apart from the theoretical lectures, hands-on practicums are organized to increase the students understanding of the theory.

Initial competences
Having followed the course on electricity or achieved the intended competences

Final competences
1. The student is able to:
 - realize a simple electronic system
2. understand and recognize basic electronic systems
3. understand the operation of electric transformers and electric motors
4. to perform simple energy and electric power measurements
5. to analyse and build contactor schemes
6. to clarify the operation of diodes, LEDs and transistors
7. to explain the operation of diodes and transistors in simple circuits
8. to understand the basics of digital logic and boolean algebra
9. to discuss the operation of digital circuits using state and timing diagrams

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract
This course unit cannot be taken via an exam contract

Teaching methods
- Demonstration, lecture, practicum

Learning materials and price
- *Elektrische en elektronische bouwstenen* Author: K. Stockman, Frederik Declercq (Dutch)
- *Labo elektrische bouwstenen* Author: I. Sweertvaegher, B. Vanwalleghem, S. Dereyne (Dutch)
- *Labo elektronische bouwstenen* Author: W. Cottegnie, B. Willems (Dutch)

A budget of approximately €40 is required to realize the electronic project.

References
- Digitale technieken : combinatorische en sequentiële logica, Cuppens Jaak, Brugge : Die Keure, 1985, aanwezig in de bibliotheek (Nederlands)

Course content-related study coaching
Questions related to the lectures can be raised after each lecture or an appointment can be made with the professor. Additional explanation is possible after each lab session.

Evaluation methods
- end-of-term evaluation and continuous assessment

Examination methods in case of periodic evaluation during the first examination period
- Oral examination

Examination methods in case of periodic evaluation during the second examination period
- Oral examination

Examination methods in case of permanent evaluation
- Written examination with open questions, open book examination, assignment
Possibilities of retake in case of permanent evaluation
 examination during the second examination period is possible in modified form

Extra information on the examination methods
 Oral examination with written preparation for the theory.
 The lab on electric applications is examined by means of a written exam to test practical knowlegde (outside the examination period).
 The lab on electronic applications is examined by means of a written exam based on the lab content (40%) and a presentation of the project work (outside the examination period, 60%).

Calculation of the examination mark

 Calculation final score
 Final score (/20) = C1xP1 + C2xP2 + C3xP3

 Cx are coefficients and Px are scores (/20) with:
 P1 : score Theory
 P2 : score Lab electric applications
 P3 : score Lab electronic applications
 C1 = 60%
 C2 = 20%
 C3 = 20%

 3 illegal absences during practical sessions can result in a score AFW (Not Present) for the complete partim.

First and second examination period
 To pass the course at least 8/20 for each partim has to be reached. When this condition is not met, there will be a modification of the calculated number to 9/20, if it is 10 or more.
 The permanent evaluation can not be improved in the second examination. For the lab electronic applications only 40% can be retaken. For the lab electric applications only 80% can be retaken.

Facilities for Working Students
 Please contact the responsible teacher.