Course Specifications

Valid as from the academic year 2017-2018

Parallel Computer Systems (E034140)

Course Specifications

Lecturers in academic year 2018-2019

<table>
<thead>
<tr>
<th>Eeckhout, Lieven</th>
</tr>
</thead>
<tbody>
<tr>
<td>TW06</td>
</tr>
<tr>
<td>lecturer-in-charge</td>
</tr>
</tbody>
</table>

Course offerings and teaching methods in academic year 2018-2019

<table>
<thead>
<tr>
<th>Semester</th>
<th>Language</th>
<th>Study methods</th>
<th>Study time</th>
<th>Contact hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>English</td>
<td>lecture, seminar: coached exercises</td>
<td>30.0 h</td>
<td>60.0 h</td>
</tr>
<tr>
<td></td>
<td>Dutch</td>
<td>guided self-study, seminar: coached exercises</td>
<td>30.0 h</td>
<td>60.0 h</td>
</tr>
</tbody>
</table>

Course size (nominal values; actual values may depend on programme)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Study time</th>
<th>Contact hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>180 h</td>
<td>60.0 h</td>
</tr>
</tbody>
</table>

Offered in the following programmes in 2018-2019

<table>
<thead>
<tr>
<th>Programme</th>
<th>crdts</th>
<th>offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of Science in Computer Science</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>Brugprogramma Master of Science in Bioinformatics (main subject Engineering)</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>Bridging Programme Master of Science in Computer Science Engineering</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>Bridging Programme Master of Science in Computer Science Engineering</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>Master of Science in Electromechanical Engineering (main subject Control Engineering and Automation)</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>Master of Science in Electromechanical Engineering (main subject Electrical Power Engineering)</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>Master of Science in Bioinformatics (main subject Engineering)</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>Master of Science in Electromechanical Engineering (main subject Maritime Engineering)</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>Master of Science in Electromechanical Engineering (main subject Mechanical Construction)</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>Master of Science in Electromechanical Engineering (main subject Mechanical Energy Engineering)</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>Master of Science in Computer Science</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>Master of Science in Computer Science Engineering</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>Master of Science in Computer Science Engineering</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>Exchange Programme in Bioinformatics (master's level)</td>
<td>6</td>
<td>A</td>
</tr>
</tbody>
</table>

Teaching languages

Dutch, English

Keywords

Computer architecture, instruction-level parallelism, data-level parallelism, memory-level parallelism, thread-level parallelism, superscalar processing, speculative execution, shared-memory computer systems, cache coherency, memory consistency, multi-core processors, multi-threading, data centers, supercomputers, system performance fundamentals, impact of technology on architecture, power/energy, reliability and fault-tolerant computing

Position of the course

This course continues on the courses 'Computer Architecture' and 'Operating Systems'. This course describes:
- modern high-performance microarchitectural techniques implemented in

(Approved)
contemporary microprocessors for exploiting instruction-level parallelism and for bridging the memory wall;
• methods for exploiting thread-level parallelism, including fundamentals of shared-memory multiprocessors, multicore and manycore processor architectures, multi-threading;
• basics of datacenter and supercomputer organization;
• impact of technology including power/energy and reliability;
• fundamentals in systems performance.

Contents

Processor architecture
• Exploiting instruction-, data- and memory-level parallelism
• Superscalar processor architectures
 • Pipelining, in-order, out-of-order, speculative execution
 • Memory hierarchy

Multiprocessor architecture
• Exploiting thread-level parallelism
• Fundamentals of shared-memory systems
 • Cache coherency, memory consistency, synchronization
• Multicore and manycore architectures
• Multi-threading (simultaneous, fine-grained, coarse-grained, GPU)
• Interconnection networks

Data center and supercomputer architecture
• Organization
• Cost analysis

Performance, power and reliability issues - impact of technology
• Iron Law of Performance, Amdahl’s Law
• Dynamic and static power consumption, power- and thermal-aware design
• Fault-tolerance, soft and hard errors, redundant computation

Initial competences
It is expected that the contents of the courses 'Computer Architecture' (obligatory) and 'Operating Systems' (not obligatory, but recommended) are well understood.

Final competences
1 Understand and be able to describe the architecture and their impact on performance of superscalar processor architectures, shared-memory multiprocessors, multi-threading, datacenters, supercomputers.
2 Understand and be able to describe the impact of technology on parallel computer systems.

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract
This course unit cannot be taken via an exam contract

Teaching methods
Guided self-study, lecture, seminar: coached exercises

Learning materials and price
Course notes (20 euro)

References

Course content-related study coaching

Evaluation methods
end-of-term evaluation and continuous assessment

Examination methods in case of periodic evaluation during the first examination period
Written examination, open book examination
Examination methods in case of periodic evaluation during the second examination period
Written examination, open book examination

Examination methods in case of permanent evaluation
Report

Possibilities of retake in case of permanent evaluation
examination during the second examination period is possible

Extra information on the examination methods
• During examination period: written open-book exam.
• Second chance: written open-book exam.
• During semester: graded project reports (15% of total score). Second chance: possible.

Calculation of the examination mark
Evaluation throughout semester as well as during examination period. Special conditions: A combination of the exam and the project work (15% of the total score). A student only passes the course if he/she passes the exam.