Course Specifications
Valid as from the academic year 2018-2019

Course size (nominal values; actual values may depend on programme)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Study time</th>
<th>Contact hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>180 h</td>
<td>67.5 h</td>
</tr>
</tbody>
</table>

Course offerings and teaching methods in academic year 2018-2019

<table>
<thead>
<tr>
<th>A (year)</th>
<th>Dutch</th>
<th>lecture</th>
<th>seminar: coached</th>
<th>exercises</th>
<th>group work</th>
<th>excursion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>35.0 h</td>
<td>5.0 h</td>
<td></td>
<td>21.25 h</td>
<td>5.0 h</td>
</tr>
</tbody>
</table>

Lecturers in academic year 2018-2019

Lynen, Frederic WE07 lecturer-in-charge
De Grave, Johan WE13 co-lecturer
Du Prez, Filip WE07 co-lecturer

Offered in the following programmes in 2018-2019

Bachelor of Science in Chemistry

<table>
<thead>
<tr>
<th>crdts</th>
<th>offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>A</td>
</tr>
</tbody>
</table>

Teaching languages

Dutch

Keywords

Chemistry, society, ethics, regulations

Position of the course

Making students conscious of the relation chemistry and society, and conversant with the ethical problems related with chemistry in all its aspects. The knowledge and social/communicative skills of the students are developed.

Contents

Semester I

Introduction
General introduction, sustainability, ecological footprint, ethics, societal impact, responsibilities of chemists.

Earth
Introduction to geology, chemical composition of the earth and mineralogy, physical aspects of minerals, systematic mineralogy

Air
Chemistry of the atmosphere, composition of air (N2, O2, CO, O3, SO2, NO2), micro particles in air), air pollution: composition, influence, the troposphere, nitrogen and carbon cycles, oxidation processes, hydrocarbons and air quality, direct sources of air pollution, ozone, indoor air quality.
Ozone layer problem, positioning in atmosphere, structure, ozone and radiation, Chapman steady state cycle, biological influences of UV radiation, destruction of stratospheric ozone, Chlorine and Fluor based hydrocarbons, hole in the ozone layer, worldwide solution strategy, alternatives for CFC’s, novel replacements solutes.
Chemistry of global warming, greenhouse effect, global energy equilibrium, historical perspective, molecular vibrations and greenhouse effect, methane and other greenhouse gasses, evolution toward the future, aerosols, influence on the chemistry of the oceans, biodiversity, solutions.

Water
the unique properties of water, the importance of the hydrogen bridge formation, the chemistry of salt and fresh water, water cycle, water consumption, water contamination, legislation, water purification processes, solutions towards expected fresh waters

(Approved)
shortages in the future.
Acid rain and acidification of the oceans, pH of rain, SO2 and the burning of coal,
nitrogen oxide contamination and link to oxidation of hydrocarbons, the nitrogen cycle,
influence of deposition of acids on materials, smog and health, influence on rivers and
lakes.

Fire
Energy from combustion: fossil fuels and electricity, thermodynamic efficiency and
energy transformation, the chemistry of coal, petroleum and natural gas, calorimetry,
energy conversions at molecular level, new application of old energy sources,
biodiesels, bio-matter and ethanol.
Energy from the transfer electrons, batteries, galvanic cells and electrons, types,
ingredients of batteries, hydride vehicles, fuel cells, hydrogen for fuel cells, photovoltaic
cells, electricity from renewable sources.
Nuclear fission and energy, usage of nuclear energy, principle and conversion to
electricity, types of radioactivity, past and future vision, radioactivity and health, nuclear
fission and war, half-life of isotopes, nuclear waste today and tomorrow, pros and cons
of nuclear energy, future perspective.

Debate
Debate with variable content: e.g. geoengineering, uses of CO2, CO2 recuperation,
algae: myths and realities.

Semester II

Life
Organic pollutants and life: persistent organic pollutants, dioxins, furans, PCB’s, PAH’s.
Chemistry of psychoactive solutes.
Chemistry and food I: food production capacity, food and metabolism, triglycerides,
esential fatty acids, diet, saccharides and alternatives, proteins, energy from food,
vitamins.
The power of the micelle, saponines, detergents, soap, micelles, applications,
surfactants.
Natural toxins: fytotoxins, myco- and fycotoxins.
Chemical analyses van from farm to fork (+ excursion): food safety, migration of toxins
through packaging materials, photo-initiators in food, EU regulations, Federal institute
for food Safety, FDA, biotechnological, biological and chemical monitoring.
Communication through chemical solutes, pheromones, types, typical examples,
perception in insects, humans and animals, detection and identification, pheromones in
ariculture.
The world of bio-macromolecules: history at UGent, Baekeland, relevance of synthetic
polymers today, definition, composition, monomers, overview, green alternatives
Organic chemistry and therapeutic drug development: functional groups, aspirin, drug
development today, penicillin and antibiotics, chirality, steroids, pros and cons of
generic medicines, alternative medicine, bio-therapeutics.
Chemistry of the genome, plant resistance, basic scheme of the genome, the double
helix and DNA, genetic coding, proteins: shape and function, genetic manipulation,
chemical synthesis through genetic manipulation, ethical aspects, pro- and contra’s.
Green chemistry: principles, atom economy, design safer chemicals, renewable
feedstocks, design for degradation.
Organic chemistry (excursion): Museum history of Sciences/Kekulé/Historical
perspective.

Group work
Preparation of a public presentation of an contemporary relevant topic as a group work
in the framework of the course (e.g. doping in sports, biodiesels, helium, graphenen,
etc.).

Initial competences
none

Final competences
1 Students are able to critically evaluate problems related with chemistry, society and
ethics, can properly formulate a personal opinion and communicate with colleagues
and neophytes in chemistry.
2 The student underdands the chemical background of contemporary problems in
relation to chemistry and society.
3 They can also collect relevant literature data to support their opinion.
4 The student is able to report verbally and in written format about a scientific topic to
an expert and to a non-expert audience.

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences
assessment

Conditions for exam contract
This course unit cannot be taken via an exam contract

(Approved)
Teaching methods

Excursion, group work, lecture, seminar: coached exercises

Extra information on the teaching methods

Theory is taught through plenary lectures. Finally students have to work in small groups (4 students) on a case study, and report on it both in a written and oral way. The latter takes place in a plenary session through a didactic presentation followed by a discussion with the whole class.

Learning materials and price

A syllabus, PowerPoint presentations and notes for the practical exercises will be available (€ 10). The group works are made available during week 11 (€ 5). Additional information and supporting material will be provided via Minerva."

References

Course content-related study coaching

It is possible to ask the professor and/or academic staff questions after the lessons or by e-mail. An appointment can be made via e-mail.

Evaluation methods

end-of-term evaluation and continuous assessment

Examination methods in case of periodic evaluation during the first examination period

Written examination, open book examination

Examination methods in case of periodic evaluation during the second examination period

Written examination, open book examination

Examination methods in case of permanent evaluation

Participation, peer assessment, report

Possibilities of retake in case of permanent evaluation

evaluation during the second examination period is not possible

Extra information on the examination methods

first examination period
semester I: written examination
semester II: written examination + open book section

second examination period
written examination, open book examination

continuous evaluation
semester 1: participation in the debate
semester 2: reports group works + public presentations

Calculation of the examination mark

Semester I: 95% written examination + continuous evaluation (5%)
Semester II: 75% written examination + 25% reports group works + public presentations

Students who are absent without any well-justified reason or who do not participate to the evaluation, do not pass the exam for this course unit.