The f-elements (C003768)

Valid as from the academic year 2017-2018

Course Specifications

Lecturers in academic year 2017-2018
Van Deun, Rik
WE06 lecturer-in-charge

Course offerings and teaching methods in academic year 2017-2018
A (semester 1)
- seminar: coached exercises 7.5 h
- lecture 30.0 h
- practicum 15.0 h

Offered in the following programmes in 2017-2018
- Master of Science in Chemistry 6 A
- Exchange Programme in Chemistry (master's level) 6 A

Teaching languages
English

Keywords
f-elements, lanthanides, actinides, rare earths, coordination chemistry, spectroscopy, luminescence

Position of the course
This course is part of the Materials Chemistry profile in the UGent-VUB master in chemistry. The courses "Anorganische chemie: basisprincipes", "Spectroscopische analysemethoden" “Structuuranalyse”, and “Chemische binding” from the bachelor in chemistry education (UGent) are a direct preparation to this course. The goal of this course is to introduce students to the lanthanide and actinide series in the periodic table. These are the so-called “f-elements”, which are rarely touched upon in other chemistry courses. Practical lab sessions will illustrate the fundamental principles that are introduced during the theoretical classes.

Contents

THEORY:

Part 1: The 4f-elements: lanthanides
Chapter I: Introduction
I.1 The early days
I.2 Occurrence and abundance
I.3 Discovery and naming of the rare earth elements
I.4 Rare earth ores
I.5 Extracting and separating
I.5.1 Extraction
I.5.2 Separation
I.6 The position of the lanthanides in the Periodic Table

Chapter II: Principles and energetics
II.1 Electron configurations of the lanthanides
II.2 How f orbitals affect properties of the lanthanides
II.3 The lanthanide contraction
II.4 Patterns in ionization energies
II.5 Atomic and ionic radii
II.6 Patterns in redox potentials

Chapter III: Lanthanide coordination chemistry

(Approved)
III.1 Generalities
III.2 First and second order effects
III.3 Aqua ions
III.4 Other O-donors
 III.4.1 Monodentate ligands
 III.4.2 Polydentate ligands
III.5 N-donors
 III.5.1 Monodentate ligands
 III.5.2 Polydentate ligands
III.6 Mixed N-/O-donor ligands
III.7 Halides
III.8 S-donors
III.9 Extreme coordination numbers
III.10 Lanthanide organometallics

Chapter IV: The metallic state: alloys and uses of the rare earth metals

Chapter V: Geopolitics and economy of rare earths
 V.1 Rare earth supply versus demand
 V.2 Case study: recycling rare earths from fluorescent lighting

Chapter VI: Photophysical properties of the lanthanides
 VI.1 Energy levels and term symbols
 VI.2 Color of the trivalent lanthanide ions
 VI.3 Hypersensitive transitions
 VI.4 Lanthanide luminescence
 VI.4.1 Exciting the Ln\(^{3+}\) ions
 VI.4.2 Quenching
 VI.4.3 Dexter versus Förster energy transfer mechanisms
 VI.4.4 Luminescence decay times
 VI.4.5 Quantum yield
 VI.4.6 Using spectral fine structure for symmetry determination

Chapter VII: Rare earth β-diketone complexes
 VII.1 Background
 VII.2 β-diketones as ligands for rare earth ions
 VII.3 Synthetic pathways
 VII.4 Luminous lanthanide β-diketonate complexes
 VII.4.1 Photoluminescence
 VII.4.2 Electroluminescence

Part 2: The 5f-elements: actinides

Chapter VIII: Principles of radioactivity and modes of radioactive decay
 VIII.1 Nuclear stability
 VIII.1.1 Patterns of nuclear stability
 VIII.1.2 Neutron-to-proton ratio
 VIII.1.3 Mass defect
 VIII.1.4 Binding energy
 VIII.2 Radioactive decay
 VIII.2.1 Modes of decay
 VIII.2.2 Natural decay series

Chapter IX: Discovery, synthesis and naming of the actinide elements
 IX.1 Actinium, thorium, protactinium, uranium
 IX.2 The transuranium elements

Chapter X: Electronic properties of the actinides
 X.1 Orbitals and electron occupation
 X.2 Oxidation states and redox potentials
 X.3 Electronic spectra

Chapter XI: Actinide coordination chemistry
 XI.1 Specific issues
 XI.2 Coordination numbers
 XI.3 Actinyl ions
 XI.3.1 Bonding in the uranyl(VI) ion
 XI.3.2 Coordination geometries in uranyl(VI) complexes
 XI.4 Complexes of the other actinides
 XI.5 Actinide organometallics

Chapter XII: Synchrotron techniques to study actinide materials
 XII.1 X-ray Absorption Spectroscopy (XAS)
 XII.2 High-Energy X-ray Scattering (HEXS)
 XII.3 Examples
 XII.3.1 A lanthanide example
 XII.3.2 An actinide example

Chapter XIII: Actinides in nuclear energy generation
 XIII.1 Neutron induced fission
 XIII.1.1 Principles
 XIII.1.2 The pressurised light water reactor

(Approved)
XIII.1.3 The Oklo phenomenon
XIII.2 Uranium enrichment
XIII.3 Nuclear fuel reprocessing
XIII.4 Nuclear explosives
 XIII.4.1 Nuclear versus conventional explosives
 XIII.4.2 Fission bombs
 XIII.4.3 Fusion bombs
Chapter XIV: Transactinides and beyond...

PRACTICALS:
- Synthesis and (structural) characterization of some rare-earth coordination compounds
- Photophysical characterization: recording steady state and time-resolved luminescence data
- Interpretation of the luminescent behavior of a given lanthanide complex

Initial competences
The student should have successfully completed a bachelor in chemistry, and hence have sufficient knowledge of electrochemistry, basic inorganic chemistry and basic coordination chemistry.

Final competences
1. Having acquired knowledge on the electronic properties of the f-elements.
2. Having acquired knowledge on the coordination chemistry of the f-elements.
3. Having acquired knowledge on the photophysical properties of the lanthanides and to a lesser extent of the actinides; being able to interpret photophysical data with relation to the structure and properties of a given complex.
4. Understanding the relevance of most lanthanides and some actinides in every-day life.
5. Having acquired the practical skills to synthesize and characterize lanthanide coordination compounds.

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences assessment.

Conditions for exam contract
This course unit cannot be taken via an exam contract.

Teaching methods
Lecture, practicum, seminar: coached exercises

Extra information on the teaching methods
The course will be taught "ex cathedra", and some of the theoretical aspects will be illustrated with coached exercises and practical lab exercises.

Learning materials and price
Course material: complete syllabus
Estimated price: 10.0 EUR
Keynote slides used during the theory classes will be made available via Minerva

References

Course content-related study coaching
Personal coaching on request

Evaluation methods
end-of-term evaluation

Examination methods in case of periodic evaluation during the first examination period
Written examination, oral examination, report

Examination methods in case of periodic evaluation during the second examination period
Written examination, oral examination

Examination methods in case of permanent evaluation
Skills test, job performance assessment, report

Possibilities of retake in case of permanent evaluation

(Approved)
Extra information on the examination methods

The permanent evaluation is based on the performance during the lab classes and the written report.
The exam consists of a combination of periodic evaluation (70%) and permanent evaluation (30%).

Calculation of the examination mark

Students must pass both the periodic evaluation and the permanent evaluation. In case a student does not pass for either the permanent evaluation or the periodic evaluation, the lowest mark is given.
Ramifications of the unfounded absence or non-participation in (part of) the permanent evaluation: the student does not receive a score and is indicated as 'absent' for the global mark.
In case the student passes both the permanent and periodic evaluation the end score is calculated as: 0.7*(score theory)+0.3*(score practicals).