Course Specifications
Valid as from the academic year 2016-2017

Integrated Limnological Field Course (C003355)

Course

Lecturers in academic year 2017-2018
De Batist, Marc WE13 lecturer-in-charge
Verschuren, Dirk WE11 co-lecturer
Vyverman, Wim WE11 co-lecturer

Course offerings and teaching methods in academic year 2017-2018
A (semester 2) group work 10.0 h
fieldwork 30.0 h
lecture 5.0 h

Offered in the following programmes in 2017-2018
Master of Science in Marine and Lacustrine Science and Management

Teaching languages
English

Keywords
Field measurements, observations, data collection (on lakes), lab analyses

Position of the course
The main objective is to convey the philosophy behind and the main practices for conducting field work on lakes, with practical hands-on introduction to the main field techniques, experiments, data acquisition and processing. The final aim is to provide the students with an insight in ecological, geological, physical, and chemical processes in lakes by means of observations, analysis and experiments in the field and in the lab.

Contents
An introduction will be given on the environmental, geological and morphological characteristics and history. Examples will be shown from exploration and measurements in the field in order to identify the specific environment. The students will go in the field to perform observations, to conduct field experiments and to collect field samples. Subsequently, the collected data will be analysed in the lab and interpreted in small groups, through which the different aspects of biosphere or geosphere processes in lakes will be studied and illustrated.

Initial competences
Insight in the most important limnological processes. Basis knowledge in physical and chemical limnology, ecology and geology.

Final competences
1. Be able to set up an optimal sampling strategy and experimental design to investigate the geological, ecological and biological status of a lake system and to carry out research autonomously.
2. Be able to collect and analyse geological samples from lakes, integrating geological time, evolution of climate through time and interactions between geosphere and biosphere.
3. Be able to identify fauna and flora based on identification guides.
4. Be able to analyse the data obtained with the appropriate tools (e.g. statistical analysis) and critically discuss and report the results (both written and oral).

(Contact hrs
Study time 90 h
Contact hrs 45.0 h

Course size (nominal values; actual values may depend on programme)
Credits 3.0
Study time 90 h
Contact hrs 45.0 h

Teaching languages
English

Keywords
Field measurements, observations, data collection (on lakes), lab analyses

Position of the course
The main objective is to convey the philosophy behind and the main practices for conducting field work on lakes, with practical hands-on introduction to the main field techniques, experiments, data acquisition and processing. The final aim is to provide the students with an insight in ecological, geological, physical, and chemical processes in lakes by means of observations, analysis and experiments in the field and in the lab.

Contents
An introduction will be given on the environmental, geological and morphological characteristics and history. Examples will be shown from exploration and measurements in the field in order to identify the specific environment. The students will go in the field to perform observations, to conduct field experiments and to collect field samples. Subsequently, the collected data will be analysed in the lab and interpreted in small groups, through which the different aspects of biosphere or geosphere processes in lakes will be studied and illustrated.

Initial competences
Insight in the most important limnological processes. Basis knowledge in physical and chemical limnology, ecology and geology.

Final competences
1. Be able to set up an optimal sampling strategy and experimental design to investigate the geological, ecological and biological status of a lake system and to carry out research autonomously.
2. Be able to collect and analyse geological samples from lakes, integrating geological time, evolution of climate through time and interactions between geosphere and biosphere.
3. Be able to identify fauna and flora based on identification guides.
4. Be able to analyse the data obtained with the appropriate tools (e.g. statistical analysis) and critically discuss and report the results (both written and oral).

(Approved)
Conditions for credit contract
 Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract
 This course unit cannot be taken via an exam contract

Teaching methods
 Group work, lecture, fieldwork

Extra information on the teaching methods
 Introductory lecture, field work, lab analysis and data processing in group

Learning materials and price
 Cost: 250.0 EUR
 field guides

References
 Course material (lecture sides, recent scientific literature) is provided by the lecturers (either in printed or electronic form).

Course content-related study coaching
 Guidance in the field and the lab

Evaluation methods
 continuous assessment

Examination methods in case of periodic evaluation during the first examination period

Examination methods in case of periodic evaluation during the second examination period

Examination methods in case of permanent evaluation
 Participation, assignment, report

Possibilities of retake in case of permanent evaluation
 examination during the second examination period is possible

Extra information on the examination methods
 Students who eschew the non-periodical evaluation cannot pass for the course. For the second examination period, the student will be given a special assignment on topics discussed during the field trips.

Calculation of the examination mark
 Evaluation of individual or team report + presentation of the report at the end of the field trip; Evaluation of motivation and degree of participation during the field trip.