Course Specifications
Valid as from the academic year 2016-2017

Nanoporous Materials (C002964)

Course Specifications
Valid as from the academic year 2016-2017

Course size

<table>
<thead>
<tr>
<th>Credits</th>
<th>Study time 75 h</th>
<th>Contact hrs 15.0 h</th>
</tr>
</thead>
</table>

Course offerings and teaching methods in academic year 2017-2018

A (semester 1)
- lecture 5.0 h
- self-reliant study activities 10.0 h

Lecturers in academic year 2017-2018

Van Der Voort, Pascal
WE06 lecturer-in-charge
De Canck, Els
WE06 co-lecturer

Offered in the following programmes in 2017-2018

Master of Science in Chemistry	3	A
Master of Science in Chemical Engineering	3	A
Master of Science in Sustainable Materials Engineering	3	A
Master of Science in Chemical Engineering	3	A
Exchange Programme in Chemistry (master's level)	3	A

Teaching languages
English

Keywords
Mesoporous, support material, ordered, material science, silicate, heterogeneous catalysis, zeolites

Position of the course
master of chemistry.
Advanced study of the state of the art of the developments in the ordered mesoporous materials.

Contents
- The development of microporous zeolites from 1950 to now. The first zeolites, the synthetic zeolites, the zeotypes and the Metal Organic Frameworks. Concept: from mimicking nature to “molecular designed synthesis”.
- The first generation of mesoporous ordered materials: MCM-materials. Advantages and disadvantages, stability
- The next generations of mesoporous materials (SBA, HMS, FSM, ...)
- Developments in the third millennium: Periodic Mesoporous Organosilicates (PMO) and mesoporous polymers, MOFs (Metal Organic Frameworks) and COFs (Covalent Organic Frameworks)
- Typical analysis techniques for the evaluation of porous solid materials: nitrogen adsorption, X-Ray Diffraction, DRIFTS, FT-Raman, with a special emphasis on pore evaluation models.

Initial competences
The student has the degree of bachelor in chemistry.
The student has followed the course “solid state chemistry” (master programme) or has similar starting competences.

Final competences
The students will be asked to investigate recent developments in the area of mesoporous materials by an independent literature survey, and to present their findings both written as orally, by means of a small tutorial/lecture, presented by the student to

(Approved)
his/her peers.

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract
This course unit cannot be taken via an exam contract

Teaching methods
Lecture, microteaching, self-reliant study activities

Extra information on the teaching methods
CLASSICAL LESSONS: 8 hours
PRESENTATIONS by the students: 30 minutes per student, followed by discussion

Learning materials and price
A syllabus will be available, together with a list of recommended books.
A list of journals will also be made available (most of them electronically available), a.o. "Microporous and Mesoporous Materials".
A this course intends to focus on very recent developments, the list of references will be updated on a yearly basis.

Cost: 0 EUR

References

-

Course content-related study coaching
The possibility of a daily contact with the professor and the PhD-students that are performing research on these materials.

Evaluation methods
end-of-term evaluation and continuous assessment

Examination methods in case of periodic evaluation during the first examination period
Oral examination

Examination methods in case of periodic evaluation during the second examination period
Oral examination

Examination methods in case of permanent evaluation
Report

Possibilities of retake in case of permanent evaluation
examination during the second examination period is possible

Extra information on the examination methods
Permanent evaluation: written and oral presentation of the project of the student, the defence and the discussion of the presented results

Calculation of the examination mark
Periodical evaluation (50%) + permanent evaluation (50%)

(Approved)