Course Specifications
Valid as from the academic year 2014-2015

Advanced X-ray Spectroscopic Techniques for Chemical Analysis
(C002961)

Course size
(nominal values; actual values may depend on programme)
Credits 3.0 Study time 75 h Contact hrs 15.0 h

Course offerings and teaching methods in academic year 2017-2018
A (semester 1) lecture 15.0 h

Lecturers in academic year 2017-2018
Vincze, Laszlo WE08 lecturer-in-charge

Offered in the following programmes in 2017-2018

<table>
<thead>
<tr>
<th>Programme</th>
<th>crds</th>
<th>offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science in Chemistry</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Master of Science in Chemical Engineering</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Master of Science in Chemical Engineering</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Exchange Programme in Chemistry (master's level)</td>
<td>3</td>
<td>A</td>
</tr>
</tbody>
</table>

Teaching languages
English

Keywords
X-ray spectroscopy, Monte Carlo simulation, synchrotron radiation, XRF, XAFS, XANES, EXAFS

Position of the course
This course provides a detailed knowledge of the principles of the most important analytical methods based on advanced X-ray induced (micro)spectroscopic techniques which make use of either laboratory or synchrotron radiation sources. The course discusses in detail the principles of chemical/structural analysis on the microscopic level by X-ray absorption/emission techniques. Special attention is given to the use of synchrotron radiation for trace-element microanalysis, absorption microspectroscopy and novel X-ray imaging methods such as transmission, phase-contrast and fluorescence microtomography. Throughout the course, examples of applications of the discussed techniques will be given in the field of materials science, geochemistry, archaeology and environmental science.

Contents
- Quantitative X-ray fluorescence (XRF) spectroscopy
- Monte Carlo simulation for XRF
- Complementary information on X-ray interactions with matter (polarisation effects in X-ray scattering, Doppler effect in Compton scattering, X-ray resonant Raman scattering, effects of secondary photoelectrons via impact ionisation and photoelectron bremsstrahlung)
- X-ray absorption spectroscopy (XAS) using synchrotron radiation

Initial competences
Having followed successfully the course “Spectroscopische analysemethoden / Spectroscopic Methods of Analysis” or having achieved these competences in an alternative way.

Final competences
The student has a thorough knowledge of the concepts of advanced X-ray (micro) spectroscopic methods for chemical analysis. He/she knows how to apply them in specific applications.

Conditions for credit contract

(Approved)
Access to this course unit via a credit contract is determined after successful competences assessment.

Conditions for exam contract
This course unit cannot be taken via an exam contract.

Teaching methods
Lecture

Learning materials and price
English syllabus Cost: 8 EUR

References

Course content-related study coaching
Interactive support through Minerva, personal: upon electronic appointment.

Evaluation methods
end-of-term evaluation

Examination methods in case of periodic evaluation during the first examination period
Written examination

Examination methods in case of periodic evaluation during the second examination period
Written examination

Examination methods in case of permanent evaluation

Possibilities of retake in case of permanent evaluation
not applicable

Calculation of the examination mark
Written exam counts for 100 %.