Course Specifications
Valid as from the academic year 2017-2018

Paleoclimatology and Climate Change (C002473)

Course size

<table>
<thead>
<tr>
<th>Credits</th>
<th>Study time</th>
<th>Contact hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>180 h</td>
<td>50.0 h</td>
</tr>
</tbody>
</table>

Course offerings and teaching methods in academic year 2017-2018

A (semester 1)
- group work 22.5 h
- lecture 25.0 h
- seminar: coached exercises 2.5 h

Lecturers in academic year 2017-2018

Colombaroli, Daniele WE11 lecturer-in-charge
De Batist, Marc WE13 co-lecturer

Offered in the following programmes in 2017-2018

<table>
<thead>
<tr>
<th>Master of Science in Marine and Lacustrine Science and Management</th>
<th>credits</th>
<th>offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Teaching languages

English

Keywords

paleoclimate, paleoceanography, climate change, global change, Quaternary, Holocene, El Niño, tectonics, thermohaline circulation, climate mechanisms

Position of the course

The aim of this course is to provide the students with a basic understanding of the global climate system, as starting point for the teaching of advanced knowledge in late-Cenozoic climate history and the full range of natural climate variations on both short (years to centuries) and long (thousands to millions of years) time scales; and of how the long-term perspective gained from paleoclimate data can be exploited for better prediction of future climate change resulting from the interaction of natural and anthropogenic climate drivers.

Contents

1. Overview of the structure and functioning of the world climate system with emphasis on components subject to variation at time scales of years and longer.
2. History and mechanisms of natural climate variation at all time scales (tectonics, Milankovitch factors, thermohaline circulation, bipolar see-saw, monsoons, solar activity, volcanoes, ENSO, NAO) with emphasis on the processes, their temporal and spatial scale of operation, periodicities in external forcing, feedback mechanisms and interactions between atmosphere, geosphere, biosphere, hydrosphere and cryosphere.
3. Overview of the principal archives and proxy indicators of climate change, their (potential) applications and characteristic limitations.
4. Historical perspective and scientific basis for anthropogenic climate change, with in-depth discussion of recent findings and the associated uncertainties.

Initial competences

Ba1 System Earth or equivalent.

Finalcompetences

1. The student has acquired general scientific and intellectual competences, competences in collaboration and communication, and social competences.
2. The student demonstrates basic knowledge of the functioning of the large-scale physical elements of the global climate system, and of potential and limitations of all

(Approved)
important natural archives and techniques in paleoclimate reconstruction.

3 The student demonstrates advanced knowledge of the complete range of patterns, frequencies and natural mechanisms of climate change during the late-Cenozoic, with emphasis on Quaternary ice ages and the Holocene.

4 The student demonstrates insight in the scales (both in space and in time) of operation of the various climate mechanisms, and their modulation through variable influences from and interactions between the atmosphere, geosphere, biosphere, hydrosphere and cryosphere.

5 The student displays an objective critical attitude towards new data, interpretations, theories and models of anthropogenic climate change in the context of the long-term perspective obtained from paleoclimate research.

6 The student demonstrates the ability to process, combine, evaluate, and synthesize in a structured manner complex information from the primary scientific literature of multiple relevant sub-disciplines.

Conditions for credit contract
Access to this course unit via a credit contract is determined after successful competences assessment

Conditions for exam contract
This course unit cannot be taken via an exam contract

Teaching methods
Group work, lecture, seminar: coached exercises

Extra information on the teaching methods
Lecture: 20 Powerpoint presentations with text and figures, made available beforehand on Minerva
Teamwork: group assignments involving literature review, synthesis and report, on topics of debate in the fields of paleoclimatology and global change
Seminar: class presentation and discussion of group assignments, using PPT presentations

Learning materials and price
Estimated total cost: 80.0 EUR

References

Course content-related study coaching
Moderation/supervision of group assignments, pre-evaluation feedback on written reports
Contact with instructors via Minerva. Personal contact with instructors on appointment.

Evaluation methods
end-of-term evaluation and continuous assessment

Examination methods in case of periodic evaluation during the first examination period
Written examination with open questions

Examination methods in case of periodic evaluation during the second examination period
Written examination with open questions

Examination methods in case of permanent evaluation
Oral examination, report

Possibilities of retake in case of permanent evaluation
examination during the second examination period is possible in modified form

Extra information on the examination methods

(Approved)
PE: Questions testing both knowledge and insight in material presented in lectures and personal work or group assignments of fellow students. Examination in the second examination period is possible.

NPE: Evaluation of the written report, the ppt presentation and the discussion abilities of the student regarding the group assignment. Students who eschew the non-periodical evaluation cannot pass for the course.

A second examination chance is offered in modified form between the first and second examination period.

Calculation of the examination mark

25% NPE
75% PE

Facilities for Working Students

1. Possible exemption from educational activities requiring student attendance
2. Possible rescheduling of the exam to a different time in the same academic year

(Approved)